Math

30 60 90 triangle calculator

Report a bug

Share calculator

Add our free calculator to your website

Please enter a valid URL. Only HTTPS URLs are supported.

Use as default values for the embed calculator what is currently in input fields of the calculator on the page.
Input border focus color, switchbox checked color, select item hover color etc.

Please agree to the Terms of Use.
Preview

What is a 30 60 90 triangle?

A 30 60 90 triangle is a special kind of right triangle that possesses unique properties, making it geometrically significant in mathematics and practical applications. Its angles measure 30°, 60°, and 90°, and this specific ratio of angles ensures certain side proportions. Thanks to these proportions, the 30 60 90 triangle is often used in engineering, architecture, and various calculations.

Features and properties of a 30 60 90 triangle

  1. Side proportions:

    • The leg opposite the 30° angle is half the hypotenuse.
    • The leg opposite the 60° angle is 3\sqrt{3} times half the hypotenuse.
  2. Unit ratios:

    • If the hypotenuse length is cc, the length of the leg opposite the 30° angle will be c2\frac{c}{2}.
    • The length of the leg opposite the 60° angle is c32\frac{c \sqrt{3}}{2}.

Thanks to these clear ratios, any problems involving finding the sides of a 30 60 90 triangle are solved easily and precisely.

Formulas

Now let’s explore how these properties can be used to calculate various triangle parameters.

1. If the leg aa (opposite the 30° angle) is known:

  • Hypotenuse cc:

    c=2ac = 2a
  • Area AA:

    A=32a2A = \frac{\sqrt{3}}{2} a^2
  • Perimeter PP:

    P=(3+3)aP = (3 + \sqrt{3})a

2. If the hypotenuse cc is known:

  • Leg aa:

    a=c2a = \frac{c}{2}
  • Other leg bb (opposite the 60° angle):

    b=a3=c32b = a \cdot \sqrt{3} = \frac{c\sqrt{3}}{2}
  • Area AA:

    A=38c2A = \frac{\sqrt{3}}{8} c^2
  • Perimeter PP:

    P=(3+3)c2P = \left(3 + \sqrt{3}\right) \frac{c}{2}

3. If the perimeter PP is known:

  • Leg aa:

    a=P3+3a = \frac{P}{3 + \sqrt{3}}
  • Hypotenuse cc:

    c=2P3+3c = \frac{2P}{3 + \sqrt{3}}
  • Area AA:

    A=32(P3+3)2A = \frac{\sqrt{3}}{2} \left(\frac{P}{3 + \sqrt{3}}\right)^2

4. If the area AA is known:

  • Leg aa:

    a=2A3a = \sqrt{\frac{2A}{\sqrt{3}}}
  • Hypotenuse cc:

    c=2a=22A3c = 2a = 2\sqrt{\frac{2A}{\sqrt{3}}}
  • Perimeter PP:

    P=(3+3)2A3P = (3 + \sqrt{3}) \sqrt{\frac{2A}{\sqrt{3}}}

Examples

Example 1: Known leg a=4a = 4

  1. Hypotenuse cc:

    c=2a=24=8c = 2a = 2 \cdot 4 = 8
  2. Area AA:

    A=32a2=3242=3216=8313.86A = \frac{\sqrt{3}}{2} a^2 = \frac{\sqrt{3}}{2} \cdot 4^2 = \frac{\sqrt{3}}{2} \cdot 16 = 8\sqrt{3} \approx 13.86
  3. Perimeter PP:

    P=(3+3)a=(3+3)4=(3+1.732)444.73218.93P = (3 + \sqrt{3})a = (3 + \sqrt{3}) \cdot 4 = (3 + 1.732) \cdot 4 \approx 4 \cdot 4.732 \approx 18.93

Example 2: Known hypotenuse c=10c = 10

  1. Leg aa:

    a=c2=102=5a = \frac{c}{2} = \frac{10}{2} = 5
  2. Other leg bb:

    b=a3=5351.7328.66b = a \cdot \sqrt{3} = 5 \cdot \sqrt{3} \approx 5 \cdot 1.732 \approx 8.66
  3. Area AA:

    A=38c2=38102=38100=12.5321.65A = \frac{\sqrt{3}}{8} c^2 = \frac{\sqrt{3}}{8} \cdot 10^2 = \frac{\sqrt{3}}{8} \cdot 100 = 12.5\sqrt{3} \approx 21.65
  4. Perimeter PP:

    P=(3+3)c2=(3+1.732)54.732523.66P = \left(3 + \sqrt{3}\right) \frac{c}{2} = \left(3 + 1.732\right) \cdot 5 \approx 4.732 \cdot 5 \approx 23.66

Example 3: Known perimeter P=30P = 30

  1. Leg aa:

    a=P3+3=303+1.732304.7326.34a = \frac{P}{3 + \sqrt{3}} = \frac{30}{3 + 1.732} \approx \frac{30}{4.732} \approx 6.34
  2. Hypotenuse cc:

    c=2P3+3=2303+1.732604.73212.68c = \frac{2P}{3 + \sqrt{3}} = \frac{2 \cdot 30}{3 + 1.732} \approx \frac{60}{4.732} \approx 12.68
  3. Area AA:

    A=32(303+3)23240.1234.81A = \frac{\sqrt{3}}{2} \left(\frac{30}{3 + \sqrt{3}}\right)^2 \approx \frac{\sqrt{3}}{2} \cdot 40.12 \approx 34.81

Example 4: Known area A=10A = 10

  1. Leg aa:

    a=2A3=2103=20311.553.39a = \sqrt{\frac{2A}{\sqrt{3}}} = \sqrt{\frac{2 \cdot 10}{\sqrt{3}}} = \sqrt{\frac{20}{\sqrt{3}}} \approx \sqrt{11.55} \approx 3.39
  2. Hypotenuse cc:

    c=2a23.396.78c = 2a \approx 2 \cdot 3.39 \approx 6.78
  3. Perimeter PP:

    P=(3+3)a=(3+1.732)3.394.7323.3916.08P = (3 + \sqrt{3}) a = (3 + 1.732) \cdot 3.39 \approx 4.732 \cdot 3.39 \approx 16.08

Frequently asked questions

How to find the leg if the hypotenuse is known?

If the hypotenuse cc is known, the leg opposite the 30° angle aa is c2\frac{c}{2}, and the leg opposite the 60° angle bb is c32\frac{c \sqrt{3}}{2}.

Can this triangle be used in architecture and other fields?

Yes, it is often used in architecture and design due to its stability and simplicity in calculations. The 30 60 90 triangle is also used in various types of layouts, construction, and even in creating three-dimensional figures.

What are the advantages of using this type of triangle?

It allows easy calculations in structure design, ensuring result accuracy.

How to calculate similar values but for a 45 45 90 triangle?

For similar calculations with another type of right triangle - 45 45 90, you can use this calculator.